نوع مقاله: علمی و پژوهشی

نویسنده

دانشیار گروه فیزیک و هسته پژوهشی مطالعات میان رشته‌ای هستی‌شناسانه، دانشگاه فردوسی مشهد، خراسان رضوی، ایران.

چکیده

مکانیک کوانتومی نظریه ای است که ساختار فکری بشر را دگرگون کرد. اما با وجود موفقیت ها ی زیاد آن از زمان اینشتین تاکنون عده ای در مورد کامل بودن آن دارای شک ، تردید و شبهه هستند. یکی از راه هایی که عده ای کامل بودن این نظریه را مورد تردید قرار می دهند قضایای ناتمامیت گودل است. کورت گودل در دوران دکترا و اندکی پس ‌از تحقیق در مورد برنامه های تمامیت و سازگاری هیلبرت در سیستم های صوری، به اثبات دو قضیۀ مهم در منطق و ریاضی پرداخت که تمامیت هرگونه نظریۀ اصل موضوعی را در حساب نفی می کنند. تعمیم پذیری این قضایا به نظریات علوم طبیعی و فیزیک ‌یکی از موضوع ها ی مورد بحث است. در این مقاله پس از بیان و شرح مسئله ، امکان به کار بردن قضیه ها ی گودل در مورد مکانیک کوانتومی مورد نقد و بررسی قرار خواهد گرفت.

کلیدواژه‌ها

عنوان مقاله [English]

Can Gödel’s incompleteness theorems be used in Quantum Mechanics?

نویسنده [English]

  • Seyed Majid Saberi Fathi

Associate Professor, Department of Physics and Research Center for Interdisciplinary Ontological Studies, Ferdowsi University of Mashhad, Khorasan Razavi, Iran.

چکیده [English]

Quantum Mechanics is the revolutionary theory that changes the structure of human thinking. From Einstein up to now , however , with its enormous successes in the world, there are many scientists that opposed it and denyed it as a complete theory . One of the ways to question the completeness of this theory is to use Gödel’s incompleteness theorems. Kurt Gödel, in his Ph. D. studied and just after working on the Hilbert’s completeness and consistency program in the formal systems, proved two important theorems which are known as the Gödel’s incompleteness theorems . These theorems deny Hilbert’s programs and the completeness of the formal system. Generalizing these theorems to the quantum theory is an over decades challenge in the foundations of physics. In this Paper , we explain the problem and we will discuss and critrize the possible usage of the Gödel’s incompleteness theorems on the quantum mechanics.

کلیدواژه‌ها [English]

  • The Gödel’s Incompleteness Theorems
  • Quantum Mechanics
  • Unpredictability
  • undecidebility

کتاب­نامه

1- فارسی:

 

-   بل، ا. (1391)، ریاضی‌دانان نامی، مترجم: ح. صفاری، تهران: انتشارات امیرکبیر.

-    دوسوسور، ف. (1389)، دورۀ زبان‌شناسی عمومی، مترجم: ک. صفوی، تهران: هرمس.

-    دیلتای، و. (1388)، مقدمه‌ای بر علوم انسانی، مترجم: م. صانعی دره بیدی، تهران: ققنوس.

-    دیلتای، و. (1389)، تشکل جهان در علوم انسانی، مترجم: م. صانعی دره بیدی، تهران: ققنوس.

 

2- لاتین:

-       Abbott, A. A; Calude C. S; Svozil K. (2015). “A variant of the Kochen-Specker Theorem Localising Value Indefiniteness”, Journal of Mathematical Physics, Vol. 56, p.102201.

-       Barrow, J. (2011). “Godel and Physics”, in M. Baaz, & e. a. (Eds.), Kurt Gödel and the Foundations of Mathematics: Horizons of Truth, New York: Cambridge University Press.

-       Bernstein, J. (1991). Quantum Profiles, New Jersey: Princeton University Press.

-       Bohm, D. (1952). “A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables”, I. Physical Review, Vol. 85, p. 166.

-       Boole, G. (1958). An Investigation of the Laws of Thought, New York: Dover.

-       Born, M. (1926). On the Quantum Mechanics of Collisions, Originally published under the title, Zur Quantenmechanik der Stossvorgange. Zeitschrift fiir Physik, Vol. 37, pp. 863-7.

-       Breuer, H-P; Petruccione, F;. (2003). The Theory of Open Quantum Systems, New York: Oxford University Press.

-       Bridges, D. and Palmgren, E. (2016). “Constructive Mathematics”, In E. Zalta (Ed.), The Stanford Encyclopedia of Philosophy, Stanford: Metaphysics Research Lab, Stanford University.

-       Brukner, C. (2008). “Quantum Experiments Can Test Mathematical Undecidability”, In C. S. Calude et al. (Ed.), Lecture Notes in Computer Science, pp. 1-5, Berlin: Springer.

-       Peres, Asher (1980). “Can we undo quantum measurements?”, Physical Review D, Vol.22, No. 4, pp. 879–883.

-       Davis, M. (1958). Computability and Unsolvability, New York: McGraw-Hill.

-       De Broglie, L. (1925). Recherches Sur La Theorie des Quanta, Paris: Masson & Cis, Editeurs.

-       Descartes, R. (1706). Les Principes de la philosophie, (indeterminé, Trans.) Rouen: Jean-Baptiste Besongne.

-       D'Espagnat, B. (1999). Conceptual Foundations of Quantum Mechanics (2nd Ed. ed.), Reading, Massachusetts: Perseus Books Publishing.

-       Dirac, P. A. (1967). The Principle of Quantum Mechanics (Fourth ed.), London: Oxford University Press.

-       EPR (Eistien A., Podolsky B. and Rosen N.) (1935). “Can Qantum-Mechanical Description of Physical Reality be Considered Complete?”, Physical Reviwe, Vol. 47, pp. 777-781.

-       Everett, H. (1957). “Relative State’ Formulation of Quantum Mechanics”, Reviews of Modern Physics, Vol. 29, pp. 454–462.

-       Feferman, S.; et al (Ed.). (1986). Kurt Godel Collected Works (Vol. I), New York: Oxford University Press.

-       Finkelstein, D. (1963). The Logic of Quantum Physics, Transactions of the New York Academy of Sciences.

-       Haroche, S. (2013). “Nobel Lecture: "Controlling Photons in a Box and Exploring the Quantum to Classical Boundary"”, Review of Modern Physics, Vol. 85, pp. 1083-1102.

-       Hartle, J. (1968). “Quantum Mechanics of Individual Systems”, American Journal of Physics, Vol. 36, p.704.

-       Held, C. (2018). The Kochen-Specker Theorem, (E. Zalta, Ed.) The Stanford Encyclopedia of Philosophy.

-       Jammer, M. (1966). The Conceptual Development of Quantum Mechanics, New York: McGraw-Hill.

-       Jammer, M. (1989). The Conceptual Development of Quantum Mechanics, The History of Modern (second ed.), New York: American Institute of Physics.

-       Janiak, A. (2008). Newton as Philosopher, New York: Cambridge University Press.

-       Laplace (Marquis de), P.-S. (2009). Essai Philosophique Sur Les Probabilités, New York: Cambridge University Press.

-       Newton, I. (1999). The Principia: Mathematical Principle of Nutural Philosophy (preceded by a guide to Newton's Principia), (I. B. Budenz, Trans.) Berkeley and Los Angeles: University of California Press.

-       Peres, A. (2002). Quantum Theory: Concepts and Methods, New York: Kluwer Academic Publishers.

-       Prigogine, I. (1962). Non-Equilibrium Statistical Mechanics, New York: Intorscience Publishers.

-       Raatikainen, P. (2015). “Gödel's Incompleteness Theorems”, In E. Zalta (Ed.), The Stanford Encyclopedia of Philosophy, Stanford: Metaphysics Research Lab, Stanford University.

-       Rosenfeld, L. (1953). “Louis de Broglie, Physcien et Penseur”, In A. George (Ed.), Louise De Borglie - Physician et Penseur, Paris: Albin Michel.

-       Schrodinger, Erwin (Trans. John D. Trimmer) (1935). “The present situation in quantum mechanics”, Naturwissenschaften, Vol. 23, pp. 807-812; 8023-828; 844-849.

-       Smith, P. (2005). An Introduction to Godel’s Theorems, Cambridge: Faculty of Philosophy University of Cambridge.

-       Smorynski, C. (1977). “The Incompleteness Theorems”, In J. Barwise, HandBook of Mathematical Logic, Amsterdam: North-Holland Publishing Company.

-       Smullyan, R. (1992). Godel's Incompleteness Theorems, New York: Oxford University Press.

-       Svozil, K. (2002). “Conventions in relativity theory and quantum mechanics”, Foundations of Physics, Vol. 32, pp. 479-502.

-       Svozil, K. (2009). “Contexts in quantum, classical and partition logic”, In G. D. Engesser K (Ed.), Handbook of Quantum Logic and Quantum Structures, Amsterdam: Elsevier.

-       Svozil, K. (2011). “Physics Unknowables”, In M. Baaz, & e. a. (Eds.), Kurt Godel and the Foundations of Mathematics: Horizons of Truth, New York: Cambridge University Press.

-       Svozil, K.; Calude C. S.; Stay M. A. (2005). “From Heisenberg to Gödel via Chaitin”, International Journal of Theoretical Physics, pp.1053-1065.

-       Tarski, A.; et al. (1953). Undecidable Theories, Amsterdam: North-Holland.

-       Vaidman, L. (2007). “Counterfactuals in Quantum Mechanics”, In H. K. Greenberger D. (Ed.), Compendium of Quantum Physics, Berlin, Heidelberg: Springer.

-       Von Newmann, J. (1966).Theory of Self-Reproducing Automata, (A. W. Burks, Ed.), London: University of Illinois Press.

-       Wheeler J. A; Zurek E. H. (1983). Quantum Theory and Measurement, New Jersey: Princeton University Press.

-       Wigner, E. (1983). “Remarks on the Mind-Body Question”, In J. A. Wheeler, Quantum Theory and Measurement, New Jersey: Princeton University Press.

-       Wolfram, S. (1994). Cellular Automata and Complexity, Collected Papers, Colorado: Westview Press.