نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری فلسفه دانشگاه تربیت مدرس

2 استاد مؤسسه پژوهشی حکمت و فلسفه ایران

چکیده

مهم‌ترین هدف فلسفی فرگه تعیین و فهم شأن معرفت شناختی و هستی شناختی صدق ریاضی بود. او برای این مهم آموزﺓ منطق‌گرایی را مطرح کرد. آموزﺓ منطق‌گرایی را می‌توان چنین بیان کرد: 1- همة صدق‌های حساب را می‌توان به زبان منطق بیان کرد؛ و 2- همة صدق‌های حساب را می‌توان از اصول موضوعة منطق محض با بکارگیری قواعد منطق و تعاریف به دست آورد. برای دفاع از این نظر، فرگه در صدد تعریف کاملی از عدد با استفاده از حدود منطق محض برآمد. اما تعاریف او از عدد، جدای از نواقصی دیگر با مسئلة سزار روبرو شدند. این مسئله عبارت است از امکان این همانی اشیاء ریاضی با اشیاء انضمامی و آن را می‌توان چنین بیان کرد: آیا سزار با یک عدد این همان است؟ هیچ‌یک از تعاریف فرگه نمی‌تواند به این سؤال پاسخ دهد و تلاش‌های بعدی نیز برای حل این مسئله همچنان ناموفق بوده است.
در این مقاله نشان داده‌ایم که مسئلة سزار تنها دارای یک بعد نیست و تنها راه حلی برای این مسئله موفق است که بتواند به سه بعد معرفت شناختی، متافیزیکی و معنا‌شناختی آن پاسخی درست ارائه بدهد. سپس راه‌حل نو منطق گرایی را برای این مسئله آزمایش کرده‌ایم و نشان داده‌ایم که این راه‌حل به علت در نظر نگرفتن ابعاد مختلف مسئله ناموفق بوده است

کلیدواژه‌ها

عنوان مقاله [English]

Caesar and Neo- Logicism

نویسندگان [English]

  • Kamran Ghayyoum Zadeh 1
  • Seyed Zia Movahed 2

1 PhD student in philosophy at Tarbiat Modares University

2 Professor of the Research Institute of Iranian Wisdom and Philosophy

چکیده [English]

Frege's main philosophical goal was to understand and determine both the ontological and epistemological status of mathematical truth. He proposed the doctrine of logicism for this goal. The doctrine of logicism explains that: 1. all the truths of arithmetic can be expressed using only logical notions. And 2.all arithmetical truths can be obtained from purely logical axioms using just logical laws and definitions. In order to defend this view, it would seem to be essential to provide a definition of the number of words in purely logical terms. But his definitions of the number of words, apart from other defects, were in conflict with the Caesar problem. The Caesar problem is the possibility of identity between mathematical objects and concrete objects; shown by the statement: 'is Caesar a number?' Frege's definitions and other contemporary solutions do not provide us with any answer to this question.
In this essay, we divide the Caesar problem into a variety of epistemological, metaphysical and semantically dimensions and we also show that a right solution must give us a sufficient answer to all these dimensions. Then we test Neo- logicism and show that this solution cannot solve this problem.

کلیدواژه‌ها [English]

  • Caesar Problem
  • Philosophy of Mathematics
  • Frege
  • Neo – Logicism
  1. منابع

    1. Benacerraf, Paul, What Numbers Could Not Be, Philosophical Review, 1965, 74.
    2. Boolos, George, The Consistency of Frege's Foundations of Arithmetic, in J.J. Thomson, on Being and Saying: Essays for Richard Cartwright,Cambridge, Mass., MIT Press, 1987.
    3. Brandom, Robert, The Significance of Complex Numbers for Frege's Philosophy of Mathematics, Proceedings of The Aristotelian Society, 1996, 96.
    4. Burgess, John. And Rosen, Gideon, A Subject with No Object: Strategies for Nominalistic Interpretation of Mathematics, Oxford, OxfordUniversity Press, 1997.
    5. Carnap, Rudolf, The Elimination of Metaphysics through Logical Analysis of Language, in A.J. Ayer, Logical Positivism,London, Allen and Unwin, 1959.
    6. Dummett, Michael, Frege's Philosophy, in P. Edwards, The Encyclopedia of Philosophy, New York, MacMillan, 1967.
    7. Dummett, Michael, Frege: Philosophy of Mathematics, London, Duckworth, 1990.
    8. Evans, Gareth, The Varieties of Reference, Oxford, OxfordUniversity Press, 1982.
    9. Field, Hartry, Quine and the Correspondence Theory, Philosophical Review, 1974, 83.
    10. Field, Hartry, The Conceptual Contingency of Mathematical Objects, Mind, 1993, 102.
    11. Frege, Gottlob, The Foundation of Arithmetic, trans. J.L. Austin, Oxford, Blackwell, 1950.
    12. Hale, Bob. And Wright, Crispin, Nominalism and the Contingency of Abstract Objects, Journal of Philosophy, 1992, 89.
    13. Hale, Bob. and Wright, Crispin, A reductio ad surdum: Field on the Contingency of Mathematical Objects, Mind, 1994, 103.
    14. Hale, Bob. and Wirght, Crispin, To Bury Caesar … , in their The Reason's Proper Study, Oxford, OxfordUniversity Press, 2001.
    15. Heck, Richard., The Julius Caesar Objection, in R.Heck, Language, Thought and Logic, Oxford, OxfordUniversity Press, 1997.
    16. Hodes, Harold, Logicism and the Ontological Commitments of Arithmetic, Journal of Philosophy, 1984, 81.
    17. Linsky, Bernard. and Zalta, Edward., In Defence of The Simplest Quantified Logic, Philosophical Perspectives, 1994, 8.
    18. Linsky, Bernard. and Zalta, Edward., In Defence of The Contingently Nonconcrete, Philosophical Studies, 1996, 84.
    19. MacBride, Fraser, Listening to Fictions: A study of Fieldian Nominalism, British Journal for The Philosophy of Science, 1999, 50.
    20. McGee, Vann, How We Learn Mathematical Language, Philosophical Review, 1997, 106.
    21. Parsons, Charles, Frege's Theory of Number, in M. Black, Philosophy in America, London, Allen and Unwin, 1964.
    22. Russell, Bertrand, On the Relation of Sense – Data to Physics, in his Mysticism and Logic, New York, Longmans, Green and Co, 1911.
    23. Shapiro, Stewart, Philosophy of Mathematics: Structure and Ontology,Oxford, OxfordUniversity Press, 1997.
    24. Williamson, Timoty, Bare Possibilia, Erkenntnis, 1998, 48.
    25. Wright, Crispin, Frege's Conception of Numbers as Objects, Aberdeen, AberdeenUniversity Press, 1983.

     

     

     

CAPTCHA Image